

Journal of Molecular Catalysis A: Chemical 128 (1998) 273-278

Synthesis of a dinuclear ansa-zirconocene catalyst having a biphenyl bridge and application to ethene polymerization

Kazuo Soga *, Hoang The Ban, Toshiya Uozumi

School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Nomi-gun, Ishikawa Pref. 923-12, Japan

Abstract

A novel dinuclear ansa-zirconocene catalyst (μ -C₁₂H₈{[SiPh(Ind)₂]ZrCl₂}) (I) was prepared by a Wurtz coupling reaction between two equivalent of bisindenylphenylchlorosilane and one equivalent of 4,4'-dibromobiphenyl in THF at reflux temperature for 12 h, followed by a successive reaction with ZrCl₄ · 2THF in THF at -78° C. Polymerization of ethene was conducted in a 300 cm³ glass reactor equipped with a stirrer at 40, 60, 80 and 100°C using MAO or Ph₃C[B(C₆F₅)₄] as cocatalyst and toluene as the solvent. The catalyst (I) gave linear polyethene with a broader molecular mass distribution (MMD) in a much higher yield as compared to the corresponding mononuclear catalyst derived from [Ph₂Si(Ind)₂]ZrCl₂ (II). The apparent activity increased monotonously from 40°C up to 100°C. The replacement of MAO with Ph₃C[B(C₆F₅)₄] gave polyethene with a higher molecular weight. © 1998 Elsevier Science B.V.

Keywords: Dinuclear ansa-zirconocene catalyst; Biphenyl bridge; Ethene polymerization

1. Introduction

The practical application of metallocene catalysts still requires to improve their thermal stability for adaptation to the various existing olefin polymerization processes [1–4]. It was reported that some ansa-metallocenes with phenyl substitutions on a silicon bridge like [Ph₂Si(Ind)₂]ZrCl₂, [Ph₂CCp(Flu)]ZrCl₂, etc. display high activities to give linear polyethenes with high molecular weights even at elevated temperatures [5]. However, the molecular mass distributions of resulting polyethenes are very narrow ($M_w/M_n = 2-3$), which caused some

1381-1169/98/\$19.00 © 1998 Elsevier Science B.V. All rights reserved. *PII* S1381-1169(97)00180-5

disadvantages on the processability due to the high shear viscosity and low melt extensional viscosity of the product [6,7]. To overcome those problems, combined metallocene catalysts like Cp_2TiCl_2/Cp_2ZrCl_2 [8] and Cp_2ZrCl_2/Cp_2HfCl_2 [9] have been developed. On the other hand, several kinds of dinuclear metallocene catalysts with diphenyl [10], phenylene [11] or siloxane bridge have also been synthesized and applied to olefin polymerizations [12,13].

In the present study, we have prepared a dinuclear ansa-zirconocene catalyst having a biphenyl bridge from bisindenylphenylchlorosilane and 4,4'-dibromobiphenyl using a modified Wurtz coupling reaction [14] and tested it to ethene polymerization. This paper reports the synthetic method of the dinuclear zirconocene

^{*} Corresponding author. Fax: +81-761-511625; e-mail: uozumi@jaist.ac.jp

catalyst together with preliminary results of ethene polymerization with it.

2. Experimental

2.1. Materials

Ethene of research grade purity donated by Mitsui Petrochemical Japan was further purified by passing through NaOH and P₂O₅ columns. Solvents (toluene, hexane, tetrahydrofuran (THF), dichloromethane and diethylether) were commercially obtained from Kanto Chemicals Japan and purified according to the usual procedures. Methylalumoxane (MAO), triethylaluminum (TEA) and $Ph_3C[B(C_6F_5)_4]$ were donated by Tosoh Akzo Japan and used without further purification. Trichlorophenylsilane commercially obtained from Kanto Chemicals Japan was further purified by reduced distillation under nitrogen atmosphere. 4.4'-dibromobiphenvl and *n*-butyllithium were commercially obtained from Kanto Chemicals Japan and used without further purification.

2.2. Synthesis of bisindenylphenylchlorosilane

A modified method to prepare bisindenvldichlorosilane [15] was employed for the synthesis of PhSi(Ind)₂Cl. A 500 ml three-neck flask was equipped with a reflux condenser, a dropping funnel and a magnetic stirring bar. Indenylmagnesiumbromide (22 g, 100 mmol) was added to the flask followed by the addition of 250 ml of diethylether. Then, trichlorophenylsilane (10.6 g, 8 ml, 50 mmol) in 100 ml of diethylether was added dropwise at room temperature and the reaction mixture was heated to reflux temperature with stirring for 10 h. After removing the solvent in vacuo, 300 ml of hexane was added followed by stirring at room temperature for 2 h. The solid fraction was removed by filtration through a Celite plug. Recrystallization of the filtrate from hexane gave 3.8 g (10.2 mmol, 20.4%) of PhSi(Ind)₂Cl as white solid powders, which was shown by ¹H-NMR (Fig. 1) to be the mixture of two diastereomers. ¹H-NMR (CDCl₃, 300 MHz, 25°C) $\delta =$ 7.59-7.38 (m, 10H, Ph), 7.32-7.01 (m, 16H, H-4, H-5, H-6, H-7), 6.98-6.90 (dd, 4H, H-3),

Fig. 1. ¹H-NMR (CDCl₃) spectrum of a mixture of two diastereomers PhSi(Ind)₂Cl (*: solvent impurity).

6.57–6.54 (dd, 2H, H-2), 6.31–.28 (dd, 2H, H-2), 4.03 (s, 2H, H-1), 3.98 (s, 2H, H-1). Further recrystallization from hexane gave a pure racemic isomer as white microcrystals, mp 130.3°C (Fig. 2). ¹H-NMR (CDCl₃, 300 MHz, 25°C) $\delta = 7.50-7.42$ (m, 5H, Ph), 7.30–7.24 (m, 4H, H-4, H-5, H-6, H-7), 7.18–7.12 (m, 4H, H-4, H-5, H-6, H-7), 6.95–6.92 (dd, 2H, H-3), 6.31–6.30 (dd, 2H, H-2), 3.98 (s, 2H, H-1). The meso isomer was enriched in the mother liquor as a sticky yellow oil after removal of the recrystallization solvent.

2.3. Synthesis of the catalyst (I)

A modified method to prepare diphenyldi-pbiphenylylsilane $(C_6H_5)_2Si(C_6H_4C_6H_5)_2$ [14] was used to synthesize the catalyst precursor. To a 500 ml three-neck flask equipped with a reflux condenser, a dropping funnel and a magnetic stirring bar, were introduced 1.1 g (3.5)mmol) of 4,4'-dibromobiphenyl, 50 ml of THF and 0.5 g of sodium ribbon. Then, two equivalent of bisindenylphenylchlorosilane (the mixture of two diastereomers, 2.6 g, 7 mmol) in 50 ml of THF was added dropwise at room temperature. The reaction mixture was heated up to reflux temperature and kept standing with vigorous stirring for 12 h. After the THF was removed by distillation, 300 ml of toluene was added. The resulting suspension was stirred at room temperature for 2 h, and the solid fraction was removed by filtration through a Celite plug. Recrystallization of the filtrate from toluene gave 2.2 g (2.7 mmol, 38.6%) of the catalyst precursor as a pale yellow powder. ¹H-NMR (CDCl₃, 300 MHz, 25°C) $\delta = 7.60-7.38$ (m, 18H, Ph), 7.35–7.12 (m, 16H, H-4, H-5, H-6, H-7), 6.96–6.92 (m, 4H, H-3), 6.66–6.62 (dd, 2H, H-2), 6.42–6.40 (dd, 2H, H-2), 4.07 (s, 2H, H-1), 4.03 (s, 2H, H-1).

The catalyst (I) was prepared by an additional reaction of dilithiosalt of the precursor with a solution of $\text{ZrCl}_4.2\text{THF}$ in THF at -78°C . The reaction mixture was slowly warmed up to room temperature and stirred over night. Lithium chloride was removed by adding toluene followed by filtration through a Celite plug. The filtrate was recrystallized from toluene to give 1.6 g (1.4 mmol, 51.8%) of the catalyst as orange powders. Despite much effort on further purification, the catalyst crystals could not be obtained at the present stage. We are trying to obtain the catalyst crystals by using pure isomers of PhSi(Ind)₂Cl.

2.4. Polymerization and analytical procedures

All operations were carried out under nitrogen atmosphere. In a 300 cm³ glass reactor equipped with a magnetic stirrer was introduced 100 ml of toluene solution of MAO ([A1] = 0.6 mmol/l). The reactor was thermostated at an appropriate polymerization temperature and saturated with ethene. An activated metallocene solution ([Zr] = 1.0×10^{-6} mol/l, [A1](MAO)

Fig. 2. ¹H-NMR (CDCl₃) spectrum of a pure racemic isomer of PhSi(Ind)₂Cl.

= 0.4 mmol/l was then injected to start the polymerization reaction. Ethene was continuously fed to the reactor to keep the pressure at 1 bar during the polymerization. The polymerization reaction was terminated by adding acidic methanol. The precipitated polymers were adequately washed with methanol and dried in vacuo at 60°C for 6 h. The weight average molecular weight (M_w) and molecular mass distribution (MMD) of polymers were measured at 145°C by GPC (gel-permeation chromatography, Senshu Scientific SSC7100) using o-dichlorobenzene as the solvent. The melting points of polymers (T_m) were measured by DSC (differential scanning calorimetry, Seiko DSC220C) at a heating rate of 10°C/min.

3. Results and discussion

The main objective of our present study is to prepare a metallocene catalyst with a high stability at elevated polymerization temperatures. The current catalyst structure stems from the model of poly(silylene)phenylene-supported metallocene catalysts which have been recently

developed in our laboratory [16]. The synthetic route of the catalyst (I) is illustrated in Scheme present catalyst 1. The having а $C_6H_5[Si(C_6H_4)]_2C_6H_5$ backbone looks highly rigid, suggesting that its thermal stability is much better than the corresponding zirconocene catalyst with a siloxane bridge [17,18]. In this study, we have conducted ethene polymerization as the first application of the catalyst (I). Therefore, the two diastereomers were used without separation. Polymerization of ethene was conducted in a 300 cm³ glass reactor at various temperatures using MAO $Ph_{3}C[B(C_{6}F_{5})_{4}]$ as cocatalyst, the results of which are summarized in Table 1. For reference, the corresponding mononuclear ansazirconocene catalyst derived from [Ph₂Si(Ind)₂]ZrCl₂ (II) was also prepared according to the literature [19] and tested to ethene polymerization. It is apparent from Table 1 that the catalyst (I) displays a much higher activity as compared to the catalyst (II). When MAO is used as cocatalyst, the polymerization activity increased monotonously from 40°C up to 100°C. Such a high activity and high thermal stability of the present catalyst might result from the

Scheme 1. A synthetic route of the catalyst (I) (μ -C₁₂H₈{[SiPh(Ind)₂]ZrCl₂}).

Table 1				
Results of ethene	polymerization	with the	catalysts	(I) and (II)

		•							
Catalyst	Cocatalyst	$T_{\rm p}$ (°C)	[Et] ^a (mol/l)	Activity (kg/mol Zr [Et] h)	$M_{\rm w} (\times 10^{-3})$	$M_{\rm w}/M_{\rm n}$	$T_{\rm m}$ (°C)	$\Delta H (\mathrm{mJ/mg})$	Crystallinity ^b (%)
Ι	MAO	40	0.109	11400	47.2	8.3	134.8	211.3	79.0
Ι	$Ph_3C[B(C_6F_5)_4]$	40	0.109	19900	87.7	10.8	136.8	204.9	76.0
I	MAO	60	0.085	3200	35.5	13.7	134.6	221.8	82.2
I ^c	MAO	60	0.169	44800	100.1	9.3	138.9	204.2	75.6
\mathbf{I}^{d}	MAO	60	0.255	44700	100.0	8.1	136.4	209.2	77.5
Ι	$Ph_3C[B(C_6F_5)_4]$	60	0.085	21500	42.3	7.3	138.3	211.7	82.1
I	MAO	80	0.065	69000	30.1	6.0	136.0	211.9	82.2
Ι	$Ph_3C[B(C_6F_5)_4]$	80	0.065	60000	36.8	4.2	136.5	226.2	83.8
Ι	MAO	100	0.028	70700	15.7	6.0	136.5	233.2	86.4
I	$Ph_3C[B(C_6F_5)_4]$	100	0.028	18200	19.3	5.6	137.6	234.5	86.9
II	MAO	40	0.109	3500	74.0	3.6	138.8	208.0	77.0
II	MAO	60	0.085	8000	70.1	3.4	135.6	213.4	79.0
	Catalyst I I I I I I I I I I I I I I I I I I I	$\begin{tabular}{ c c c c c } \hline Catalyst & Cocatalyst \\ \hline I & MAO \\ \hline I & Ph_3C[B(C_6F_5)_4] \\ \hline I & MAO \\ \hline I^c & MAO \\ \hline I^d & MAO \\ \hline I & Ph_3C[B(C_6F_5)_4] \\ \hline I & MAO \\ \hline I & Ph_3C[B(C_6F_5)_4] \\ \hline I & MAO \\ \hline I & Ph_3C[B(C_6F_5)_4] \\ \hline I & MAO \\ \hline I & Ph_3C[B(C_6F_5)_4] \\ \hline I & MAO \\ \hline $	Catalyst Cocatalyst T_p (°C) I MAO 40 I Ph ₃ C[B(C ₆ F ₅) ₄] 40 I MAO 60 I ^c MAO 60 I ^d MAO 60 I Ph ₃ C[B(C ₆ F ₅) ₄] 60 I Ph ₃ C[B(C ₆ F ₅) ₄] 60 I Ph ₃ C[B(C ₆ F ₅) ₄] 80 I Ph ₃ C[B(C ₆ F ₅) ₄] 80 I Ph ₃ C[B(C ₆ F ₅) ₄] 100 I Ph ₃ C[B(C ₆ F ₅) ₄] 100 I MAO 40 II MAO 60	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Catalyst Cocatalyst T_p (°C) [Et] ^a (mol/l) Activity (kg/mol Zr [Et] h) I MAO 40 0.109 11400 I Ph ₃ C[B(C ₆ F ₅) ₄] 40 0.109 19900 I MAO 60 0.085 3200 I ^c MAO 60 0.169 44800 I ^d MAO 60 0.255 44700 I Ph ₃ C[B(C ₆ F ₅) ₄] 60 0.085 21500 I MAO 80 0.065 69000 I Ph ₃ C[B(C ₆ F ₅) ₄] 80 0.065 60000 I Ph ₃ C[B(C ₆ F ₅) ₄] 80 0.065 60000 I Ph ₃ C[B(C ₆ F ₅) ₄] 80 0.028 70700 I Ph ₃ C[B(C ₆ F ₅) ₄] 100 0.028 18200 II MAO 40 0.109 3500 II MAO 60 0.085 8000	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CatalystCocatalyst $T_{\rm p}$ (°C)[Et] ^a (mol/l)Activity (kg/mol Zr [Et] h) $M_{\rm w}$ (×10 ⁻³) $M_{\rm w}/M_{\rm n}$ IMAO400.1091140047.28.3IPh_3C[B(C_6F_5)_4]400.1091990087.710.8IMAO600.085320035.513.7I ^c MAO600.16944800100.19.3I ^d MAO600.25544700100.08.1IPh_3C[B(C_6F_5)_4]600.0852150042.37.3IMAO800.0656900030.16.0IPh_3C[B(C_6F_5)_4]800.0656000036.84.2IMAO1000.0287070015.76.0IPh_3C[B(C_6F_5)_4]1000.0281820019.35.6IIMAO400.109350074.03.6IIMAO600.085800070.13.4	CatalystCocatalyst $T_{\rm p}$ (°C)[Et] ^a (mol/1)Activity (kg/mol Zr [Et] h) $M_{\rm w}$ (×10 ⁻³) $M_{\rm w}/M_{\rm n}$ $T_{\rm m}$ (°C)IMAO400.1091140047.28.3134.8IPh_3C[B(C_6F_5)_4]400.1091990087.710.8136.8IMAO600.085320035.513.7134.6I ^c MAO600.16944800100.19.3138.9I ^d MAO600.25544700100.08.1136.4IPh_3C[B(C_6F_5)_4]600.0852150042.37.3138.3IMAO800.0656900030.16.0136.0IPh_3C[B(C_6F_5)_4]800.0656000036.84.2136.5IMAO1000.0287070015.76.0136.5IMAO400.109350074.03.6138.8IIMAO600.085800070.13.4135.6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Polymerization conditions: monomer pressure = 1 bar, $[Zr] = 1.0 \times 10^{-6} \text{ mol/l}$, Al(MAO)/Zr = 1000, Al(TEA)/Zr = 100 when $Ph_3C[B(C_6F_5)_4]$ was used as cocatalyst, toluene = 100 ml, polymn. time = 10 min.

^aCalculated from literature [20].

^bCalculated from literature [21].

^c Monomer pressure = 2 bar.

^dMonomer pressure = 3 bar.

cooperating interaction between the two adiacent zirconocenes which are electronically coupled through a biphenvl bridge. However, the precise reasons are not clear at the moment. It is also uncertain why the replacement of MAO with $Ph_3C[B(C_6F_5)_4]$ caused a marked decrease in the activity at 100°C. Whereas, the weight average molecular weight (M_{w}) of polyethene decreased substantially with an increase in the polymerization temperature. The use of $Ph_{3}C[B(C_{6}F_{5})_{4}]$ as cocatalyst yielded polyethene with a slightly higher $M_{\rm w}$. The catalyst (I), especially combined with MAO, yielded polyethene with a broader molecular mass distribution (MMD), which may reflect the difference in catalytic performance between the two diastereomers.

Then, the effect of ethene pressure on the activity and M_w was briefly investigated, the results of which are shown in Table 1 (runs No. 4 and 5). Both the activity and the M_w of polyethene increased markedly with raising the ethene pressure from 1 to 2 bar. However, a further increase in the ethene pressure did not change the activity of the catalyst or the M_w of polyethene. Since the activity of the present dinuclear zirconocene catalyst is extremely high, a lot of polyethene was produced under such conditions. The use of a bigger reactor equipped with a mechanical stirrer might be necessary to evaluate those values more precisely.

4. Conclusion

A novel dinuclear zirconocene catalyst having a biphenyl bridge has been prepared and applied to ethene polymerization at elevated temperatures. It was found that the dinuclear catalyst shows an extremely high activity for ethene polymerization to give linear polyethene with a high molecular weight and a broad molecular mass distribution (MMD) even at 100°C. We are now preparing similar catalysts using the pure meso and racemic isomers of PhSi(Ind)₂Cl. The detailed characterization of those catalysts together with the results of propene polymerization over them will be reported elsewhere.

References

- H.H. Brintzinger, D. Fischer, R. Mulhaupt, B. Rieger, R.M. Waymouth, Angew. Chem. Int. Ed. Engl. 34 (1995) 1143.
- [2] K.B. Sinclair, Proc. 2nd Int. Congress on Metallocene Polymers, Metallocene '96, Germany, 6–7 March 1996, p. 351.
- [3] M.J. Brekner, Proc. 2nd Int. Congress on Metallocene Polymers, Metallocene '96, Germany, 6–7 March 1996, p. 153.
- [4] R.T. Sylvest, Proc. 2nd Int. Congress on Metallocene Polymers, Metallocene '96, Germany, 6–7 March 1996, p. 197.
- [5] K. Inatomi, A. Yano, A. Akimoto, Proc. 5th Korea–Japan Polyolefin Workshop, Korea, 26–28 November 1996, p. 149.
- [6] E. Shamshoum, S. Kim, A. Hanyu, R.B. Reddy, Proc. 2nd Int. Congress on Metallocene Polymers, Metallocene '96, Germany, 6–7 March 1996, p. 259.
- [7] W. Hellmuth, Proc. 2nd Int. Congress on Metallocene Polymers, Metallocene '96, Germany, 6–7 March 1996, p. 239.
- [8] J.A. Ewen, Proc. Int. Symp. Catalytic Polymerization of olefins, T. Keii, K. Soga (Eds.), Kondansha, 1986, p. 271.
- [9] A. Alhers, W. Kaminsky, Macromol. Rapid Commun. 9 (1988) 457.
- [10] M.E. Huttenloch, J. Diebold, U. Rief, H.H. Brintzinger, A.M. Gilbert, T.J. Katz, Organometallics 11 (1992) 3600.
- [11] S. Jungling, R. Mulhaupt, J. Organomet. Chem. 460 (1993) 191.
- [12] D.H. Lee, K.B. Yoon, E.H. Lee, S.K. Noh, C.S. Lee, W.S. Huh, Macromol. Rapid Commun. 17 (1996) 639.
- [13] A. Cano, T. Cuenca, P. Gomez-Sal, B. Royo, P. Royo, Organometallics 13 (1994) 1688.
- [14] B.L. Spialter, D.C. Priest, C.W. Harris, J. Am. Chem. Soc. 77 (1955) 6227.
- [15] Y.X. Chen, M.D. Rausch, J.C.W. Chien, Organometallics 12 (1993) 4607.
- [16] H.T. Ban, T. Uozumi, K. Soga, Polym. Preprints, Japan 46 (1997) 216.
- [17] K. Soga, T. Arai, H.T. Ban, T. Uozumi, Macromol. Rapid Commun. 16 (1995) 905.
- [18] T. Arai, H.T. Ban, T. Uozumi, K. Soga, Macromol. Chem. Phys. 198 (1997) 229.
- [19] W. Spaleck, M. Antberg, V. Dolle, R. Klein, J. Rohrmann, A. Winter, New J. Chem. 14 (1990) 499.
- [20] J. Suhm, M.J. Schneider, R. Mulhaupt, J. Polym. Sci. A 35 (1997) 735.
- [21] M. Inoue, J. Polym. Sci. A 1 (1963) 2697.